
ПРОИЗВОДСТВО СУЛЬФИТНОЙ ЦЕЛЛЮЗЫ

Преимущества сульфитной целлюлозы

- ✓ Больший, на 3-5% выход целлюлозы из древесины
- ✓ Более светлый цвет целлюлозы, она легче отбеливается и в ряде случаев может использоваться без отбелки
- ✓ СФИ целлюлоза легко размалывается и имеет хорошие бумагообразующие свойства
- ✓ СФИ целлюлоза имеет высокую реакционную способность. Беленая облагороженная целлюлоза широко используется для химической переработки
- ✓ При СФИ способе производства происходит более рациональное использование органических компонентов отработанного щелока

В зависимости от рН, сульфитные растворы бывают

Кислые рН=1,5 - 2,0

 $Ca(HSO_3)_2 + H_2SO_3 + SO_2 + H_2O$

Бисульфитные рН=4 - 5

Ca(HSO₃)₂

Нейтрально-сульфитные рН=9 - 10

 $Na_2SO_3+Na_2CO_3$ (сода)

Способ варки	Вид основа- ния	Выход полуфаб- риката из древеси- ны, %	Используемые дре- весные породы	Вид и назначение полуфаб- риката	Основные преиму- щества	Основные недо- статки
Сульфитный	Ca, Mg, Na, NH ₄	44—65	Ель, пихта, лиственные	Полуцеллюлоза, целлю- лоза всех степеней про- вара для бумаг, мягкая целлюлоза для химичес- кой переработки	Светлый цвет полуфабриката	Невозможность варки сосны и лиственницы
Бисульфитный	Mg, Na	50—70	Практически все	Полуцеллюлоза, целлю- лоза высокого выхода, жесткая и среднежесткая целлюлоза для бумаг	Разделение на волокна без раз- мола при высо- ком выходе	Низкий выход РВ в отработан- ном щелоке
Моносульфит- ный	Na, NH₄	60—80	Лиственные	Полуцеллюлоза для картона, целлюлоза высокого выхода для отбелки	Высокая прочность на плоскостное сжатие	Невозможность использования хвойных пород
Бисульфитно- сульфитный	Na, Mg	45—60	Все без исклю- чения	Целлюлоза высокого выхода, целлюлоза всех степеней провара для бумаг, целлюлоза для химической переработки	Возможность ус- пешной варки сосны и листвен- ницы	Усложнение технологии
Моносульфит- но-сульфитный	Na, NH₄	50—60	Практически все	Целлюлоза высокого выхода, целлюлоза всех степеней провара для бумаг	То же	То же
Бисульфитно- моносульфит- ный	Mg, Na	50—60	Практически все	Целлюлоза высокого выхода, жесткая и среднежесткая целлюлоза для бумаг	Повышенный выход	Низкий выход РВ в щелоке, по- вышенный рас- ход основания
Моносульфит- но-бисульфит- ный	Na, NH ₄	65—80	Практически все	Полуцеллюлоза, целлю- лоза высокого выхода	Повышенный выход	Повышенный расход основа- ния
Сульфитно- сульфитный	Na, NH₄	30—40	Ель, лиственные	Целлюлоза для химичес- кой переработки	Высокий выход РВ в щелоке	Низкий выход целлюлозы
Сульфитно-со- довый	Na	35—45	Хвойные (принципиально все породы)	Облагороженная целлю- лоза для химической пе- реработки	Высокое содер- жание α-целлю- лозы	Сложность регенерации щелоков, невозможность использования РВ в щелоке
Бисульфитно- сульфитно-со- довый	Na	35—40	Сосна (принци- пиально все по- роды)	То же	То же	То же
Бисульфитно- содовый	Na	40—50	Хвойные	Целлюлоза среднежест- кая и мягкая для бумаг и для химической пере- работки	Повышенный выход	*
Сульфитно- сульфатный (метод ЛТА)	Na	35—40	Хвойные (прин- ципиально все породы)	Облагороженная целлю- лоза для химической пе- реработки	Регенерация щелоков по обычному суль- фатному методу	Высокий расход основания

Состав сульфитной кислоты:

бисульфит
$$Ca(HSO_3)_2$$
 моносульфит $CaSO_3 + H_2SO_3 + SO_2 + H_2O$ связанный SO_2 полусвязанный SO_2 растворенный SO_2 свободный SO_2 весь SO_2

Серосодержащее сырье

• 1. Сера – природная или газовая

Содержит 98,9-99,9 % элементарной серы.

Не допускается примесь мышьяка. SO₂ получают сжиганием серы:

$$S+O_2 \rightarrow SO_2$$

• 2. Серный колчедан (пирит) FeS₂

SO₂ получают обжигом колчедана:

$$4\text{FeS}_2 + 11\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2 + Q$$

3. Жидкий диоксид серы (SO₂).

100 %-ный сжиженный SO₂ поставляют на комбинат в цистернах.

Сырье катионов основания

- 1. Кальций: для приготовления кислоты на кальциевом основании по башенному способу используют:
 - известняк СаСО3
 - и известь СаО
- 2. В качестве магниевого сырья используют:
 - каустический магнезит MgCO₃
 - брусит природный $Mg(OH)_2$
- 3. В качестве натриевого сырья используют:

кальцинированную соду NaCO₃

• 4. Аммиак:

используют аммиачную воду — раствор NH_4OH с концентрацией аммиака (NH_3) 20-25%.

Кальциевое основание

принято называть нерастворимым бисульфит кальция может существовать в растворе только при наличии

в нем избытка растворенного SO_2 .

Иначе он разлагается:

$$Ca(HSO_3)_2 \rightarrow CaSO_3 \downarrow + SO_2 + H_2O$$

Магниевое основание

принято называть полурастворимым, поскольку бисульфит магния может существовать в растворе и без избытка SO_2 , но при нагревании он разлагается с образованием труднорастворимого $MgSO_3$:

 $Mg(HSO_3)_2 \rightarrow MgSO_3 + SO_2 + H_2O$

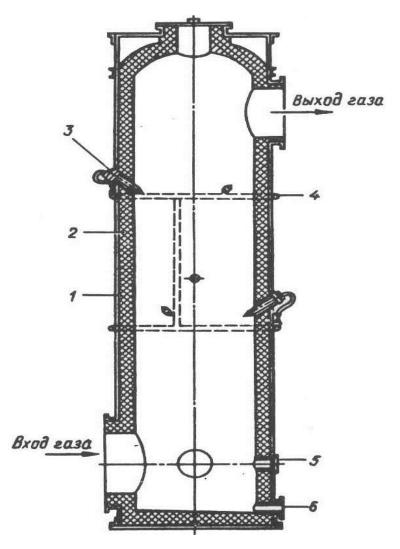
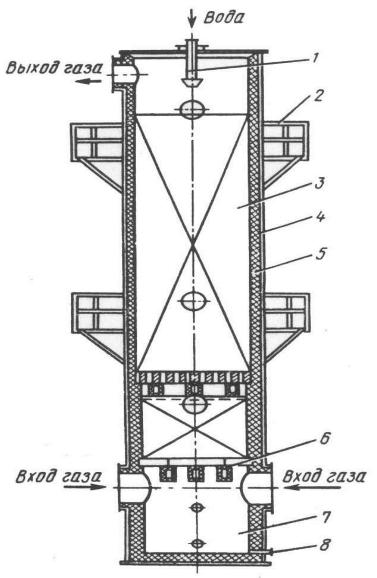
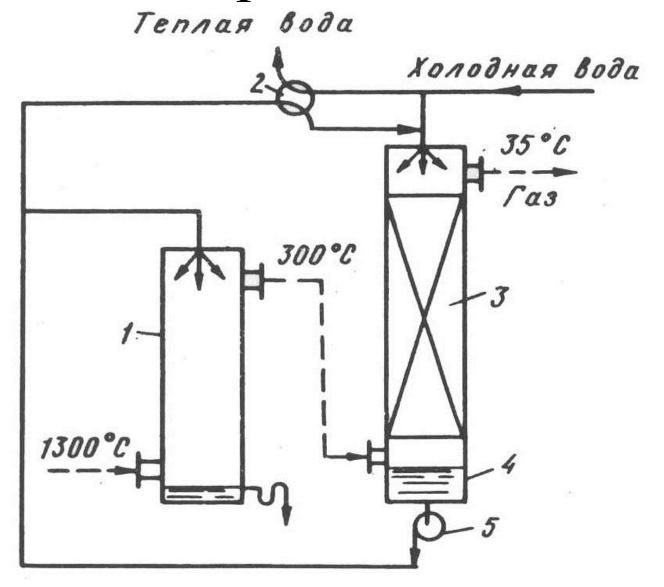

Приготовление сырой кислоты

Схема кислотного цеха


$$S+O_2 \rightarrow SO_2+296 кДж$$

Полый скруббер


- 1. Корпус
- 2. Футеровка
- 3. Форсунка
- 4. Трубопровод воды
- 5. Смотровое окно
- б. Промывной штуцер

Скруббер с насадкой

- 1. Распылитель
- 2. Площадка для обслуживания
- 3. Насадка
- 4. Корпус
- 5. Футеровка
- Колосниковая решетка
- 7. Сборникотстойник промывных вод
- 8. штуцер

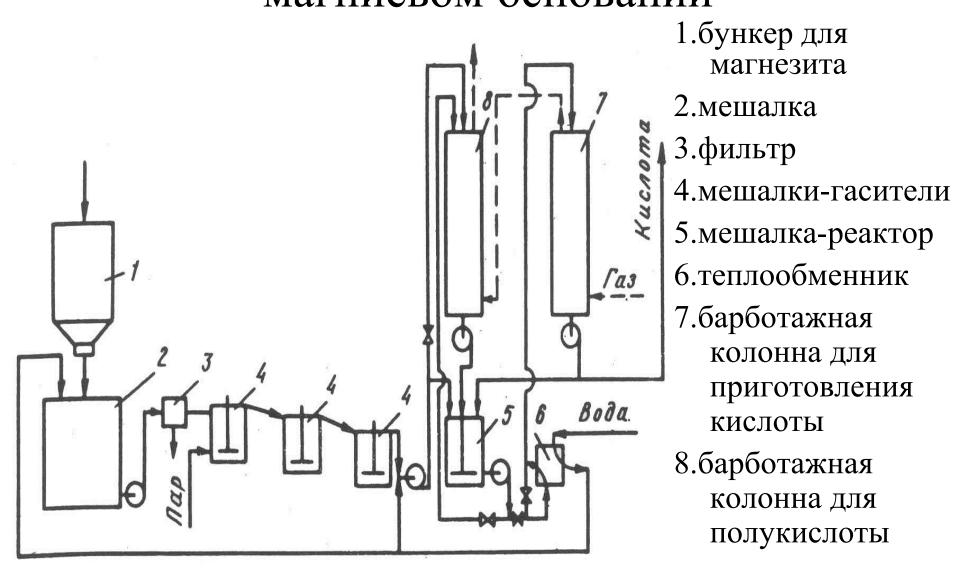
Схема мокрой очистки газов

При поглощении SO_2 щелочами и растворами карбонатов, сначала образуется сульфит, затем SO_2 реагирует с водой с получением сернистой кислоты, и при реакции сульфита с которой образуется бисульфит:

$$Mg(OH)_2 + SO_2 \rightarrow MgSO_3 + H_2O$$

 $SO_2 + H_2O \rightarrow H_2SO_3$
 $MgSO_3 + H_2SO_3 \rightarrow Mg(HSO_3)_2$

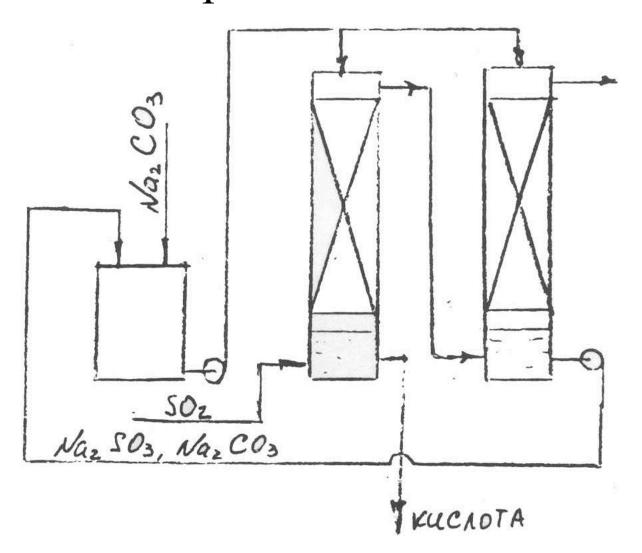
Для приготовления кислоты на магниевом основании


- используют MgO, который получают путем обжига каустического магнезита MgCO₃ при температуре 800 ⁰C.
- Вначале MgO гасят водой и получают гидроксид магния:
 - $MgO+H_2O \rightarrow Mg(OH)_2$

Образовавшийся гидроксид магния плохо растворяется в воде и представляет собой суспензию — магнезиальное молоко, которое подвергают насыщению газом SO₂.

$$Mg(OH)_2 + SO_2 \rightarrow MgSO_3 + H_2O$$

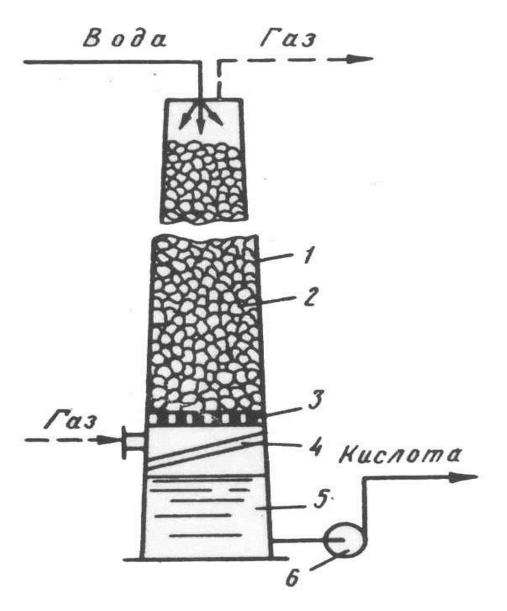
$$MgSO_3 + H_2SO_3 \rightarrow Mg(HSO_3)_2$$


Схема приготовления кислоты на магниевом основании

Приготовление кислоты на натриевом основании

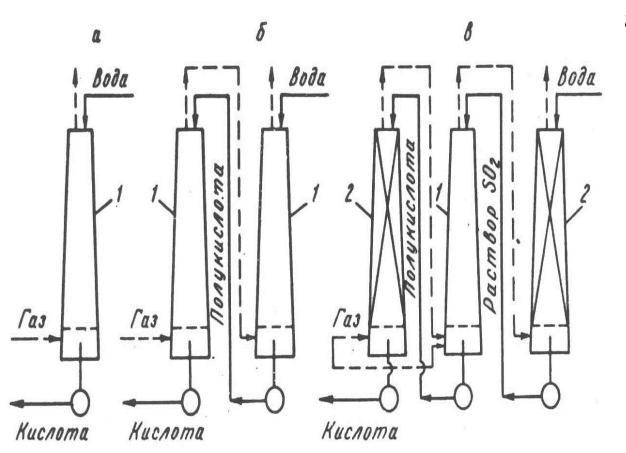
- Рабочие растворы соды с концентрацией 1,8-2,3% готовят в расходных баках. Эти разбавленные растворы подают в абсорберы, чаще всего барботажные, в которых происходят следующие реакции:
- $SO_2+H_2O\rightarrow H_2SO_3$
- $Na_2CO_3 + H_2SO_3 = Na_2SO_3 + CO_2 + H_2O_3$
- $NaSO_3 + H_2SO_3 = 2NaHSO_3$

Схема приготовления кислоты на натриевом основании



Приготовления кислоты на кальциевом основании

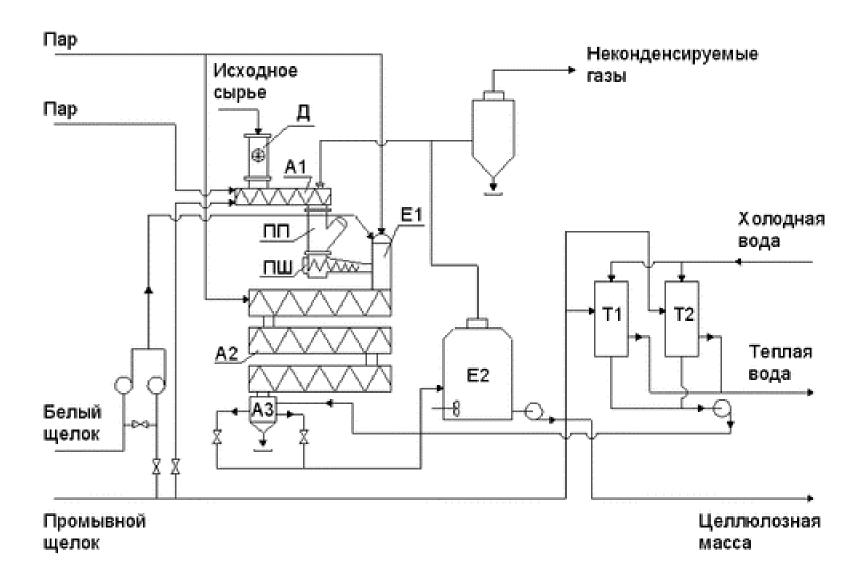
сырьем служит известняк СаСО₃.


- Существуют два способа приготовления сырой кислоты на кальциевом основании известковомолочный и башенный.
- В башне роль активной насадки выполняет известняк, из которого образуется бисульфит кальция в результате протекания химических реакций:
- $2H_2SO_3+CaCO_3=Ca(HSO_3)_2+CO_2+H_2O$

Кислотная башня

- 1.корпус
- 2.известняк
- 3.несущая колосниковая решетка
- 4.задерживающая решетка
- 5.отстойник кислоты
- 6.насос

Схемы работы кислотных башен



а.Однобашенный система Митчерлиха

б.Двухбашенный система Иенсена

в.Трехбашенный способ

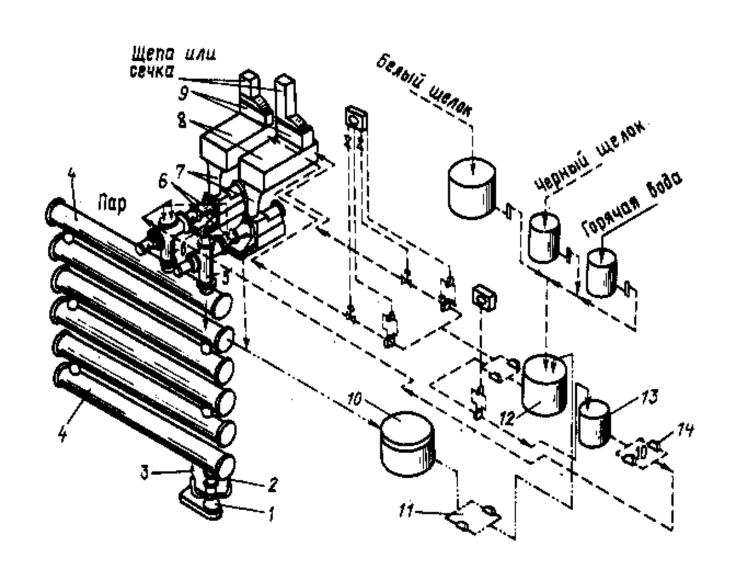
МНОГОТРУБНАЯ ВАРОЧНАЯ УСТАНОВКА

Многотрубные варочные установки

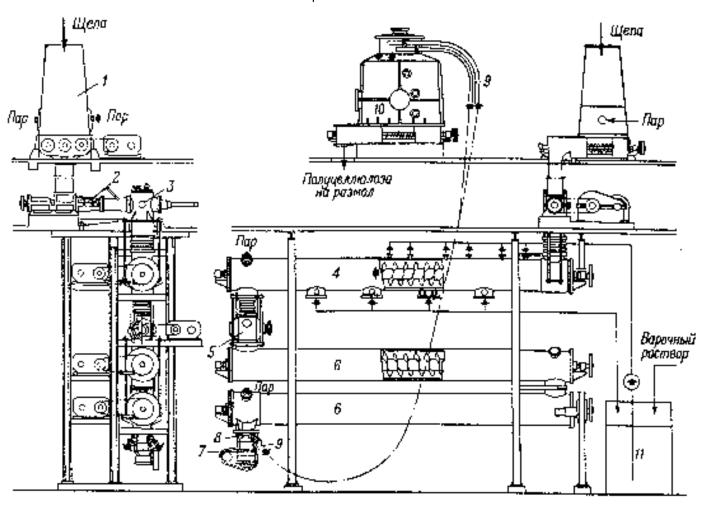
Предназначены для варки целлюлозы и полуцеллюлозы в парогазовой фазе сульфатным, натронным и нейтрально-сульфитным способом. В этих установках варят древесину любой породы, а также недревесное сырьё, например тростник.

Продолжительность варки составляет 10-60 мин., в зависимости от требований к качеству продукции, **температура варки** - 160-180 °C, **давление** - 0,8-0,9 МПа.

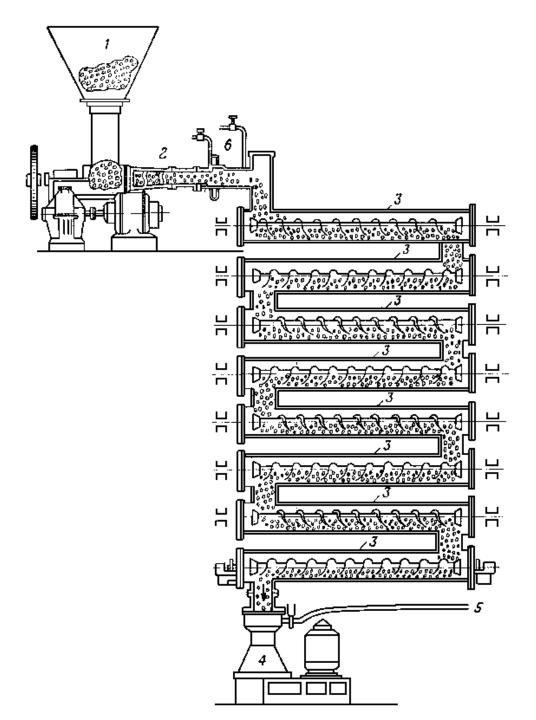
Номинальная производительность - 30, 60, 120 и 250 т/сут.

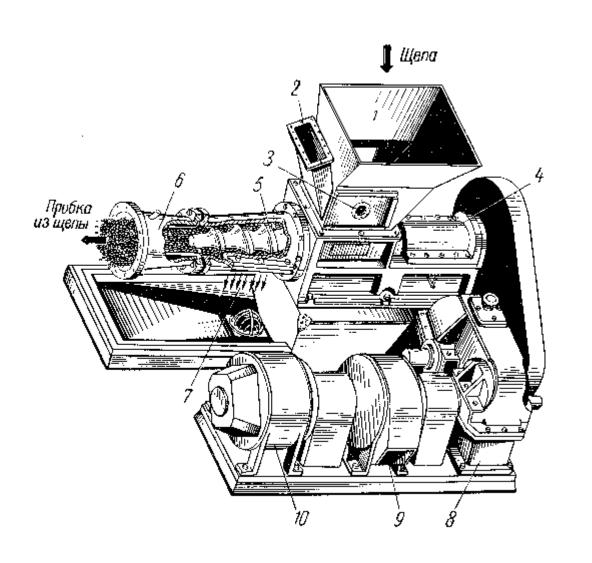

Получаемый полуфабрикат применяют, как правило, в композиции картона. Преимущества таких установок - простота конструкции и обслуживания, в том числе останов и пуск.

Недостатки - низкая производительность и низкая прочность получаемого полуфабриката из-за интенсификации варки.


По конструкции многотрубные установки делятся на

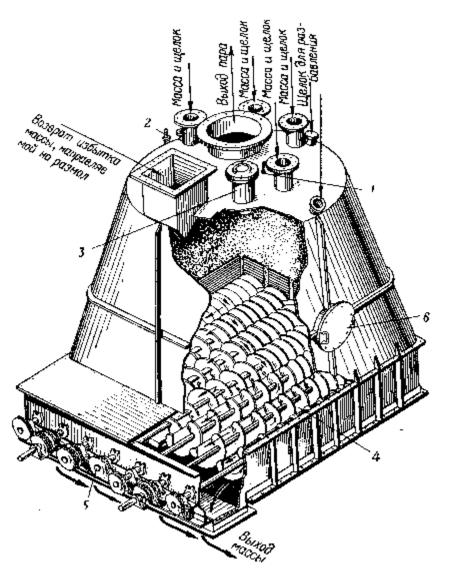
- установки со **шнековым** (винтовым) питателем;
- установки с роторным питателем.


Многотрубная варочная установка


Варочный аппарат Пандия с пропиточной трубой и циркуляцией щёлока

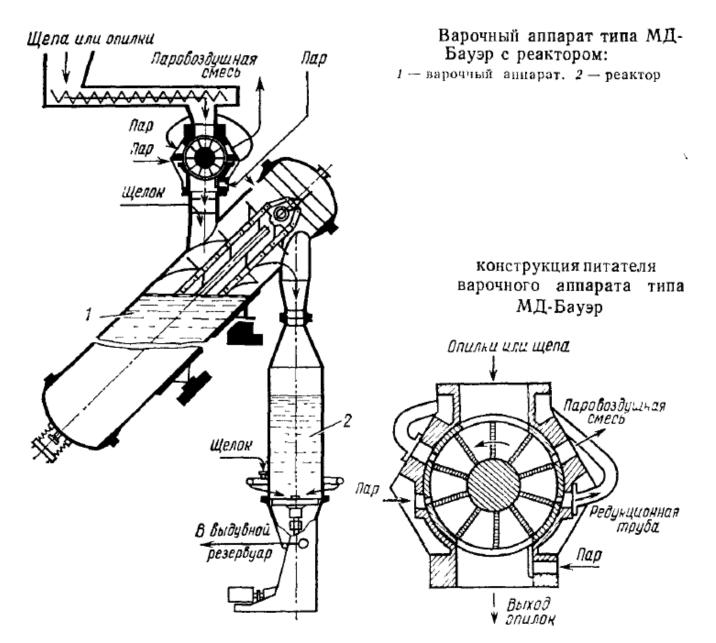
Варочная установка типа Пандия

Шнековый питатель аппарата Пандия



- 1 бункер;
- 2 выхлоп пара;
- 3 смотровое стекло;
- 4 упорный подшипник;
- 5 -шнек;
- 6 диффузор;
- 7 слив отжатой

жидкости;

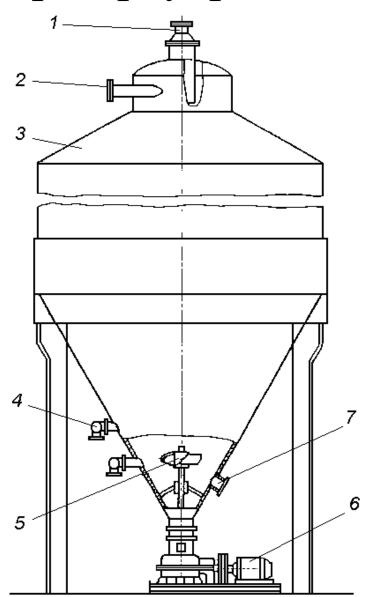

- 8 редуктор;
- 9 вариатор скорости;
- 10 электродвигатель

Выдувной резервуар с подвижным дном

- 1 датчик укращателя уровня;
- 2 предохранительный клапан (устраняет создание вакуума);
- 3 предохранительный клапан (устраняет избыточное давление);
- 4 шнековые транспортёры;
- 5 привод шнеков;
- 6 смотровые люки.

Установка Бауэр-МД

Аппараты для приёма массы после варки


Предназначены для приёма, аккумулирования и разбавления целлюлозы до определённой концентрации перед подачей её на дальнейшую переработку

Выдувные и вымывные резервуары

Выдувной резервуар

Вымывной резервуар

